Free Vibration Analysis of Carbon Nanotube Reinforced Laminated Composite Panels

نویسندگان

  • B. Ramgopal Reddy
  • K. Ramji
  • B. Satyanarayana
چکیده

In this paper, free vibration analysis of carbon nanotube (CNT) reinforced laminated composite panels is presented. Three types of panels such as flat, concave and convex are considered for study. Numerical simulation is carried out using commercially available finite element analysis software ANSYS. Numerical homogenization is employed to calculate the effective elastic properties of randomly distributed carbon nanotube reinforced composites. To verify the accuracy of the finite element method, comparisons are made with existing results available in the literature for conventional laminated composite panels and good agreements are obtained. The results of the CNT reinforced composite materials are compared with conventional composite materials under different boundary conditions. Keywords—CNT Reinforced Composite Panels; Effective Elastic Properties; Finite Element Method; Natural Frequency;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Analysis of Spherical Composite Panels Reinforced by Carbon Nanotube

In this study, the buckling behavior of moderately thick Carbon Nano-Tube (CNT)-reinforced spherical composite panels subjected to both uniaxial and biaxial loads is examined. The uniform and various kinds of functionally graded distributions of the CNT are considered. The mechanical properties of the nanocomposite panels are estimated using the modified rule of mixture. Based on the first-orde...

متن کامل

A Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation

The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...

متن کامل

Static and Free Vibration Analyses of Functionally Graded Nano-composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation

In this study, static and free vibration analyses of functionally graded (FG) nanocomposite plates, reinforced by wavy single-walled carbon nanotubes (SWCNTs) resting on a Pasternak elastic foundation, were investigated based on a mesh-free method and modified first-order shear deformation theory (FSDT). Three linear types of FG nanocomposite plate distributions and a uniform distribution of wa...

متن کامل

Free Vibration and Buckling Analyses of Functionally Graded Nanocomposite Plates Reinforced by Carbon Nanotube

This paper describes the application of refined plate theory to investigate free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by aggregated carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, satisfying the zer...

متن کامل

Vibration Analysis of Timoshenko Beam reinforced with Boron-Nitride Nanotube on Elastic Bed

In this paper, free vibration analysis of a polymer-based nano-composite beam reinforced by boron-nitride nanotubes and subjected on elastic foundation, is studied. Smooth and defect-free nanotubes with uniform and directly- orientated in matrix are intended. Also, nanotubes’ distribution in the thickness direction of beam is regarded as a uniform distribution of the three different targeted on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012